A model for extra-axonal diffusion spectra with frequency-dependent restriction

نویسندگان

  • Wilfred W Lam
  • Saâd Jbabdi
  • Karla L Miller
چکیده

PURPOSE In the brain, there is growing interest in using the temporal diffusion spectrum to characterize axonal geometry in white matter because of the potential to be more sensitive to small pores compared to conventional time-dependent diffusion. However, analytical expressions for the diffusion spectrum of particles have only been derived for simple, restricting geometries such as cylinders, which are often used as a model for intra-axonal diffusion. The extra-axonal space is more complex, but the diffusion spectrum has largely not been modeled. We propose a model for the extra-axonal space, which can be used for interpretation of experimental data. THEORY AND METHODS An empirical model describing the extra-axonal space diffusion spectrum was compared with simulated spectra. Spectra were simulated using Monte Carlo methods for idealized, regularly and randomly packed axons over a wide range of packing densities and spatial scales. The model parameters are related to the microstructural properties of tortuosity, axonal radius, and separation for regularly packed axons and pore size for randomly packed axons. RESULTS Forward model predictions closely matched simulations. The model fitted the simulated spectra well and accurately estimated microstructural properties. CONCLUSIONS This simple model provides expressions that relate the diffusion spectrum to biologically relevant microstructural properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison

This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusio...

متن کامل

Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy

Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon...

متن کامل

Mesoscopic structure of neuronal tracts from time-dependent diffusion

Interpreting brain diffusion MRI measurements in terms of neuronal structure at a micrometer level is an exciting unresolved problem. Here we consider diffusion transverse to a bundle of fibers, and show theoretically, as well as using Monte Carlo simulations and measurements in a phantom made of parallel fibers mimicking axons, that the time dependent diffusion coefficient approaches its macro...

متن کامل

Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter

Axonal density and diameter are two fundamental properties of brain white matter. Recently, advanced diffusion MRI techniques have made these two parameters accessible in vivo. However, the techniques available to estimate such parameters are still under development. For example, current methods to map axonal diameters capture relative trends over different structures, but consistently over-est...

متن کامل

What dominates the time dependence of diffusion transverse to axons: Intra- or extra-axonal water?

Brownian motion of water molecules provides an essential length scale, the diffusion length, commensurate with cell dimensions in biological tissues. Measuring the diffusion coefficient as a function of diffusion time makes in vivo diffusion MRI uniquely sensitive to the cellular features about three orders of magnitude below imaging resolution. However, there is a longstanding debate, regardin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2015